

FIGURE 24. EFFECT OF SUPPORT PRESSURE P3 ON BORE PRESSURE CAPABILITY FOR THE RING-FLUID-SEGMENT CONTAINER

$$\alpha_{r} = 0.5$$
, $\alpha_{m} = -0.5$
 $k_{1} = 1.5$, $k_{2} = 2.0$.

Pin-Segment Container

The analysis of the pin-segment container, shown in Figure 7(d), also assumes a high-strength liner. It is also assumed that any manufactured interference is taken up during assembly by slack between pins and holes. Therefore, the residual pressure q_1 between liner and segments is zero at room temperature and nonzero at temperature only if the coefficient of thermal expansion of the liner, α_1 , is greater than that of the segments, α_2 . In this analysis, it is assumed that $\alpha_1 \ge \alpha_2$.

The following radial deformation equation must be satisfied:

$$u_1(r_1) + \alpha_1 \triangle Tr_1 = u_1(r_1) + \alpha_2 \triangle Tr_2$$
 (67)

where

 $u_1(r_1) = the radial deformation of the liner at <math>r_1$ due to p at r_0 and p_1 at r_1 when $p \neq 0$, and due to q_1 at r_1 when p = 0

u₂(r₁) = the radial deformation of the segments at r₁ due to p₁ or q₁ at r₁ and the pin loading at r₂.

Substituting into Equation (67), Equations (17a) and (26a) for u₁ and u₂, and solving for p₁, one gets

$$p_1 = \frac{1}{g_2} \left[\frac{2p}{k_1^2 - 1} + E_1 \triangle T (\alpha_1 - k_2 \alpha_2) \right]$$
 (68)

where

$$g_{2} = \frac{E_{1}}{E_{2}} \left[\frac{k_{2}^{2}+1}{k_{2}^{2}-1} + \nu + \frac{M_{2}f_{3}(r_{1})}{\beta_{1}} + E_{2} \frac{G_{2}}{r_{1}} + g_{m4}(r_{1}) \right] + \frac{k_{1}^{2}+1}{k_{1}^{2}-1} - \nu$$
(69)

Similarly, q₁ is found if p is taken as zero; i.e.,

$$q_1 = \frac{E_1 \triangle T (\alpha_1 - k_2 \alpha_2)}{g_2}$$
 (70)

Formulating the range in hoop stress $(\sigma_{\theta})_r$ at the bore (Equation (59) and using the definition $\alpha_r \sigma_1 = (\sigma_{\theta})_r$, we get the following expression for p/σ_1 :

$$\frac{p}{\sigma_1} = \frac{2\alpha_r (k_1^2 - 1)^2 g_2}{\left[g_2 (k_1^4 - 1) - 4k_1^2\right]}$$
(71)

[Equation (71) is identical in form to Equation (61).]